STILBENE GLYCOSIDE GALLATES AND PROANTHOCYANIDINS FROM POLYGONUM MULTIFLORUM*

GEN-ICHIRO NONAKA, NAOKO MIWA and ITSUO NISHIOKA

Faculty of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, 812 Fukuoka, Japan

(Received 4 June 1981)

Key Word Index—Polygonum multiflorum; Polygonaceae; stilbene glycoside gallates; flavan-3-ols; proanthocyanidins; tannins.

Abstract—Two new stilbene glycoside gallates and proanthocyanidins have been isolated from *Polygonum multiflorum*. The stilbenes were shown to be 2"- and 3"-O-monogalloyl esters of 2,3,5,4'-tetrahydroxystilbene 2-O- β -D-glucopyranoside.

INTRODUCTION

The genus Polygonum (Polygonaceae) produces a wide range of secondary metabolites including phenolcarboxylic acids, flavonoids, anthraquinones and stilbenes [1], and the occurrence of tannins in some of the species has been recognized by their astringency. In the course of a chemical examination of tanning and the related compounds in crude drugs, we have already reported condensed tannins and a gallotannin in commercial rhubarb (the root of Rheum palmatum L.) which is closely related to the genus Polygonum [2]. We now report the isolation of two new stilbene glycoside gallates (1, 2), together with galloyl procyanidins (3, 4) which occur in rhubarb in large quantities [2], from the root of Polygonum multiflorum Thunb., a climbing plant native to China, and also describe the occurrence of gallic acid (5), (+)-catechin (6), (+)-epicatechin (7), 3-O-galloyl-(-)catechin (8) and 3-O-galloyl-(-)-epicatechin (9).

RESULTS AND DISCUSSION

Sephadex LH-20 chromatography of the EtOAcsoluble portion, eluting with H₂O containing increasing amounts of MeOH, and subsequent rechromatography of each fraction using EtOH, gave compounds 1-9. Compounds 5-9 were respectively identified as gallic acid, (+)-catechin, (+)-epicatechin and 3-O-gallates of (-)-catechin [3] and (-)-epicatechin [2] by direct comparison with authentic samples and/or enzymatic hydrolysis with tannase.

Compound 1, fluorescent in UV light, showed intense blue colouration with FeCl₃ on TLC. The presence of a galloyl group was deduced from a two-proton singlet signal (δ 7.24) and an ester absorption band (1705 cm⁻¹) in the ¹H NMR and IR spectra. Enzymatic hydrolysis of 1 with tannase afforded a hydrolysate (1a) and gallic acid (5). The ¹H NMR spectrum of 1a exhibited in the aromatic and olefinic field an A_2B_2 -type signal (δ 6.81, 7.47, J =

9 Hz), a pair of meta-coupled doublets (δ 6.31, 6.69, J = 3 Hz) and trans olefinic proton signals (δ 6.96, 7.78, $J = 16 \,\mathrm{Hz}$). 1a formed on acetylation a heptaacetate (1b), which revealed three aromatic and four aliphatic acetoxyl signals in the ¹H NMR spectrum. From spectral and chemical evidence, 1a was suggested to be 2.3.5.4'-tetrahydroxystilbene glycoside, and finally was identical with 2,3,5,4'-tetrahydroxystilbene 2-O-\beta-D-glucopyranoside which had been reported in the root of this plant in large amounts (1.2%) [4]. The position of the galloyl group in 1 was determined by comparison of the ¹³C NMR spectra of 1 and 1a. The sugar C-2 signal in 1, shifted to lower field by 0.6 ppm, while C-3 being shifted upfield by 2.4 ppm, were characteristic, indicating the galloyl group was attached to the C-2 hydroxyl group in glucose moiety. This result was also supported by the H NMR spectrum of 1, showing a triplet signal (δ 5.32) assignable to the C-2 proton coupled with an anomeric C-1 proton.

Compound 2 was, as 1, a stilbene glycoside gallate as revealed by 'H NMR, 13C NMR and IR spectra, and gave, on enzymatic hydrolysis with tannase, 2,3,5,4'-tetrahydroxystilbene 2-O-β-D-glucopyranoside (1a) and gallic acid (5). The ¹H NMR spectrum of 2 showed a triplet signal (δ 5.29, J = 9 Hz) due to a galloyl-bearing proton which was not coupled with the sugar C-1 proton, suggesting that a galloyl group was attached to the C-3 or C-4 hydroxyl group in glucose moiety. 13C NMR spectral comparison of 2 with 1a established the location of a galloyl group to be C-3 OH group in glucose moiety, since chemical shift differences in these two spectra were observed only in C-2, C-3 and C-4 atoms (C-3 at low field, C-3 and C-4 at high field, in 2).

Compound 3, which formed anthocyan pigments on heating with mineral acids [5], was a proanthocyanidin. The presence of a galloyl group was obvious from a singlet signal (δ 6.96) corresponding to two protons in the ¹H NMR spectrum. Treatment of 3 with tannase yielded procyanidin B-1 (3a) [2, 6] and gallic acid (5). A C-3 proton signal (δ 5.33) shifted to low field in the ¹H NMR spectrum of 3 suggested that a galloyl group

^{*}Part 2 in the series "Tannins and Related Compounds". For Part 1 see ref. [2].

OH

HO

$$A'$$
 A'
 A''
 A'
 A''
 A''

 $3 \quad R = Galloyl$ $3a \quad R = H$

4 R = Galloyl
4a R = H

was located at C-3 position. The ¹H NMR spectra of 3 and its methylate were consistent with 3-O-galloyl-procyanidin B-2 reported previously [2].

Compound 4, a proanthocyanidin, containing two galloyl groups as shown by H NMR spectrum (δ

6.99, 7.07), gave on enzymatic hydrolysis with tannase procyanidin B-2 (4a) [2,6] and gallic acid (5). The ¹H NMR spectrum of 4 implied the position of two galloyl groups to be at C-3 and C-3' positions. The identification of 4 with 3,3'-di-O-galloylprocy-

Table 1. ¹³C NMR spectra of stilbenes*

		1	2	1a
	C-1	118.8	120.8	121.3
	C-2	134.9	136.8	137.3
	C-3	151.3	151.0	151.5
	C-4	103.2	103.2	103.2
	C-5	155.0	155.2	155.3
	C-6	103.4	107.0	107.3
	C-1'	134.5	129.5	129.2
	C-2',6'	128.5	128.6	128.6
	C-3',5'	116.2	116.0	116.0
	C-4'	157.5	157.5	157.6
	$C-\alpha,\beta$	129.0, 132.3	129.7, 132.9	130.0, 132.9
	C-1"	102.8	102.2	102.0
	C-2"	75.1	73.1	74.9
	C-3"	75.1	78.5	77.5
	C-4"	70.3	68.4	70.6
	C-5"	77.4	77.3	77.5
	C-6"	61.3	61.3	62.1
	(C-1	121.1	121.1	_
Galloyl	C-2, 6	110.1	109.9	_
	C-3, 5	145.7	145.5	
	l C-4	138.9	138.7	
	-COO-	166.7	167.0	

^{*}Run at 25.05 MHz.

anidin B-2 [2] was confirmed by the ¹H NMR spectra of 4 and its methylate.

Polymeric proanthocyanidins (10), obtained by Sephadex LH-20 chromatography from the aqueous solution after removal of the EtOAc-soluble portion, were hydrolysed with tannase to give gallic acid (5) and polymeric hydrolysates (10a). Cleavage reaction of 10 with benzylmercaptan in the presence of acetic acid [6] afforded (+)-catechin (6) and 3-O-galloyl-(-)epicatechin (9) derived from the lower terminal units of the polymers, and 4-benzylthioethers of 3-O-galloyl(-)-epicatechin (11) and (-)-epicatechin (12) from the upper unit. From these facts coupled with the occurrence of two proanthocyanidin dimers (3, 4), the polymers 10 comprised 3-O-galloyl-(-)-epicatechin and (-)-epicatechin units in the upper part and (+)-catechin, and (+)-catechin and 3-O-galloyl-(-)epicatechin units in the lower terminal part. Although these results were consistent with those in rhubarb [2], the polymers in P. multiflorum L. were assumed to be less galloylated than those in rhubarb, judging from the low yield of gallic acid on enzymatic hydrolysis.

EXPERIMENTAL

Mps are uncorr. Unless otherwise stated ¹H NMR 100 MHz and ¹³C NMR spectra were obtained in Me₂CO- d_6 + D₂O, and chemical shifts are given in δ (ppm) scale relative to TMS. TLC was conducted on precoated Kieselgel 60 F₂₅₄ plates (Merck) and spots were visualized by FeCl₃ reagent.

Extraction and isolation. The dried, milled roots (1.03 kg) of P. multiflorum were extracted with 80% aq. Me₂CO, and the aq. soln, after evaporation of Me₂CO under red. pres., was successively extracted with Et₂O and EtOAc. The EtOAc extract (49.7 g) was chromatographed over Sephadex LH-20 eluting with H₂O containing increasing amounts of MeOH to give four fractions (fractions 1-4). Crystallization of fraction 1 (0.7 g) afforded gallic acid (5) (0.22 g). Fraction 2 (29.7 g) was rechromatographed over Si gel using C₆H₆-EtOAc (1:1-0:1) to yield compound 1a (19.1 g) and a mixture of (+)-catechin (6) and (+)-epicatechin (7). Pure samples of (+)-catechin (6) (0.14 g) and (+)-epicatechin (7)(0.05 g) were obtained by fractional crystallization from H₂O. Sephadex LH-20 chromatography of fraction 3 eluting with EtOH gave compounds 1 (0.14 g), 2 (0.09 g), 3 (0.10 g) and 9 (0.19 g). Fraction 4 yielded, after separation with Sephadex LH-20 chromatography using EtOH, compounds 4 (0.14 g) and 8 (0.03 g).

Compound 1. Pale brown needles (H₂O), mp 182–184°, $[\alpha]_D^{13}$ – 29.9° (c 0.19, Me₂CO). IR ν_{max}^{KBr} cm⁻¹: 3300 (OH), 1705 (ester); ¹H NMR (δ): 3.4–4.0 (5H, m, sugar H), 5.01 (1H, d, J=9 Hz, C-1"), 5.32 (1H, t, J=9 Hz, C-2), 6.31, 6.62 (each 1H, d, J=3 Hz, C-4, C-6), 6.88, 7.14 (1H, d, J=17 Hz, olefinic H), 6.64, 7.18 (each 2H, A₂B₂-type d, J=9 Hz, C-2', C-3'), 7.24 (2H, s, galloyl H). (Found: C, 57.14; H, 4.80. $C_{27}H_{16}O_{13}\cdot 1/2H_2O$ requires: C, 57.30; H, 4.94.)

Enzymatic hydrolysis of 1. 1 (80 mg) in aq. soln was incubated with tannase at 37°. After 1 hr the soln was evaporated to dryness and the residue was treated with EtOH. EtOH-soluble portion was chromatographed over Sephadex LH-20 using EtOH to give a hydrolysate (1a) and gallic acid (5). 1a, a pale yellow powder, $[\alpha]_D^{20} + 73.0^\circ$ (c 0.63), Me₂CO). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (OH), 1610 (benzene ring); ¹H NMR (δ): 3.44–3.82 (6H, m, sugar H), 4.54 (1H, d, J = 8 Hz, C-1"), 6.31, 6.69 (each 1H, d, J = 3 Hz, C-4, C-6), 6.81, 7.47

(each 2H, A_2B_2 -type d, J = 9 Hz, C-2', C-3'), 6.96, 7.78 (each 1H, d, J = 16 Hz, olefinic H). Hepta-acetate (1b), colourless needles (EtOH), mp $167-169^\circ$, $[\alpha]_{12}^{23}-25.5^\circ$ (c 0.38, CHCl₃). ¹H NMR (CDCl₃, δ): 3.59 (1H, m, C-5"), 3.90 (1H, dd, J = 2, 12 Hz, C-6"), 4.28 (1H, dd, J = 4, 12 Hz, C-6"), 4.92 (1H, d, J = 9 Hz, C-1"), 5.12-5.44 (3H, m, C-2", -3", -4"), 6.83, 7.26 (each 1H, d, J = 3 Hz, C-4, C-6), 6.96, 7.33 (each 1H, d, J = 16 Hz, olefinic H), 7.08, 7.49 (each 2H, A_2B_2 -type d, J = 9 Hz, C-2', C-3'). (Found: C, 58.29; H, 5.18. Calc. for $C_{34}H_{36}O_{16}$: C, 58.21; H, 5.28.)

Compound 2. A pale brown amorphous powder, $[\alpha]_D^{25}$ +11.7° (c 0.14, Me₂CO). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3360 (OH), 1700 (ester), 1610 (benzene ring); ¹H NMR (δ): 3.4–4.0 (5H, m, sugar H), 4.74 (1H, d, J = 9 Hz, C-1"), 5.29 (1H, t, J = 9 Hz, C-3"), 6.31, 6.70 (each 1H, d, J = 3 Hz, C-4, C-6), 7.17 (2H, s, galloyl H), 6.80, 7.47 (each 2H, A₂B₂-type d, J = 9 Hz, C-2', C-3'), 6.95, 7.28 (each 1H, d, J = 16 Hz, olefinic H). 2 was, similarly was 1, hydrolysed with tannase to furnish gallic acid and 1a.

Compound 3. An off-white amorphous powder, $[\alpha]_D^{20}$ + 1.26° (c 0.38, Me₂CO). ¹H NMR (8): 2.56 (1H, dd, J = 8, 16 Hz, C-4'), 2.89 (1H, dd, J = 5, 16 Hz, C-4'), 4.06 (1H, m, C-3'), 4.46 (1H, br d, J = ca 8 Hz, C-2'), 4.63 (1H, br s, C-4), 5.33 (1H, br s, C-3), 5.83 (1H, d, J = 3 Hz, C-6), 5.95 (1H, d, J = 3 Hz, C-8), 6.10 (1H, s, C-6'), 6.96 (2H, s, galloyl H). Enzymatic hydrolysis of 3 with tannase, followed by purification with Sephadex LH-20 chromatography, afforded procyanidin B-1 (3a) [2, 6] and gallic acid (5).

Compound 4. An off-white amorphous powder, $[\alpha]_0^{25}$ -95.3 (c 0.81, Me₂CO). ¹H NMR (δ): 2.9-3.1 (2H, m, C-4'), 4.79 (1H, d, J = 3 Hz, C-4), 4.98 (1H, br s, C-2'), 5.5-5.6 (2H, m, C-3, C-3'), 5.65 (1H, br s, C-2), 5.93 (2H, br s, C-6, C-8), 6.13 (1H, s, C-6'), 6.99, 7.07 (each 2H, s, galloyl H). Treatment of 4 with tannase, similarly as 1, yielded procyanidin B-2 (4a) [2,6] and gallic acid. Methylation of 4 with Me₂SO₄ and K₂CO₃ in dry Me₂CO afforded a tetradecamethylate, a colourless powder, $[\alpha]_0^{20}$ -90.5° (c 0.22, CHCl₃). ¹H NMR (δ): 3.48-3.86 (OMe), 3.08 (2H, m, C-4'), 4.83 (1H, br s, C-4), 4.94 (1H, d, J = 11 Hz, C-2'), 5.32 (1H, m, C-3'), 5.62 (1H, br s, C-3), 5.71 (1H, br s, C-2), 5.98 (2H, s, C-6, C-8), 6.43 (1H, s, C-6'), 7.01, 7.12 (each 2H, s, galloyl H).

Compound 8—3-O-galloyl-(-)-catechin. An off-white amorphous powder, $[\alpha]_{0}^{20}$ -51.5° (c 0.20, EtOH). ¹H NMR (δ): 2.84 (1H, dd, J = 6, 10 Hz, C-4), 3.00 (1H, dd, J = 5, 10 Hz, C-4), 5.08 (1H, d, J = 7 Hz, C-2), 5.38 (1H, m, C-3), 6.00, 6.07 (each 1H, d, J = 2 Hz, C-6, C-8), 7.03 (2H, s, galloyl H). On hydrolysis with tannase 8 afforded gallic acid and (-)-catechin, mp 172-174°, $[\alpha]_{1}^{21}$ -7.9° (c 0.36, Me₂CO).

Compound 9—3-O-galloyl-(-)-epicatechin. An off-white amorphous powder, $[\alpha]_D^{23}$ –160.6° (c 0.22, Me₂CO). ¹H NMR (δ): 2.98 (2H, m, C-4), 5.14 (1H, s, C-2), 5.56 (1H, m, C-3), 6.04, 6.08 (each 1H, d, J=3 Hz, C-6, C-8), 6.76 (1H, d, J=8 Hz, C-5'), 6.90 (1H, dd, J=3, 8 Hz, C-6'), 7.03 (2H, s, galloyl H), 7.06 (1H, d, J=3 Hz, C-2').

Isolation of polymeric proanthocyanidins (10). The aq. layer, after extraction with EtOAc, was concentrated to a syrup which was chromatographed over Sephadex LH-20 successively eluting with H₂O (1.51.), H₂O-EtOH (1:1) (1.01.), EtOH (1.01.) and H₂O-Me₂CO (1:1) (2.01.). The H₂O eluate was further chromatographed over Sephadex LH-20 using EtOH containing increasing amounts of H₂O. The EtOH-H₂O (7:3-1:1) eluate afforded polymeric proanthocyanidins (10) (8.5 g).

Enzymatic hydrolysis of 10. An aq. soln (20 ml) of polymers (10) (1.0 g) was incubated with tannase for 4.5 hr at 37°. Ppt. was filtered off and the filtrate was concentrated to

give a brown powder which was subjected to Sephadex LH-20 chromatography. Elution with EtOH gave gallic acid (5) (51 mg). Further elution with EtOH-H₂O (7:3-6:4) provided polymeric hydrolysates (0.6 g).

Cleavage reaction of 10. A mixture of 10 (1.0 g), benzylmercaptan (8 ml), AcOH (5 ml) and EtOH (40 ml) was refluxed for 24 hr under N_2 . After evaporation of the solvents, the residue was separated by Sephadex LH-20 chromatography to afford compounds 6, 9, 11 and 12. The procedures for the separation of these compounds and their properties are essentially as reported in [2].

REFERENCES

- 1. Karrer, W. (1958) Konstitution und Vorkommen der organischen Pflanzenstoffe. Birkhäuser, Basel.
- Nonaka, G., Nishioka, I., Nagasawa, T. and Oura, H. (1981) Chem. Pharm. Bull. (Tokyo) (in press).
- 3. Haslam, E. (1969) J. Chem. Soc. (C), 1824.
- Hata, K., Kozawa, M. and Baba, K. (1975) Yakugaku Zasshi 95, 211.
- 5. Bate-Smith, E. C. (1975) Phytochemistry 14, 1107.
- Thompson, R. S., Jacques, D., Haslam, E. and Tanner, R. J. N. (1972) J. Chem. Soc., Perkin Trans. 1, 1387.